β
Mapel Matematika, Jenjang Sekolah Menengah Atas
(2(2) – 1) + (2(3) – 1) + (2(4) – 1)
= (4 – 1) + (6 – 1) + (8 – 1)
= 3 + 5 + 7
= 8 + 7
= 15
π
Pertanyaan Baru di Matematika
[6/10]
β
Matematika, Sekolah Menengah Atas
(2(2) – 1) + (2(3) – 1) + (2(4) – 1)
= (4 – 1) + (6 – 1) + (8 – 1)
= 3 + 5 + 7
= 8 + 7
= 15
π
[4/10]
f(x) = 3x – 2
g(x) = 4x + 1
f(1) + g(1) = …β
Matematika, Sekolah Menengah Atas
Penjelasan dengan langkah-langkah:
= f(1) + g(1)
= 3(1) – 2 + 4(1) + 1
= 3 – 2 + 4 + 1
= 1 + 5
= 6
f(x) = 3x – 2
g(x) = 4x + 1
f(1) + g(1)
= [3(1) – 2] + [4(1) + 1]
= [3 – 2] + [4 + 1]
= 1 + 5
= 6
[9/10]
tentukan nilai x yang memenuni
β
Matematika, Sekolah Menengah Atas
3/x + 1/2 = 5/8
3/x = 5/8 – 1/2
3/x = 5/8 – 4/8
3/x = 1/8
x = 24
3/24 + 1/2
= 1/8 + 1/2
= 1/8 + 4/8
= 5/8 [ Terbukti ]
π
Jawaban:
[8/10]
β
+ ΒΌ Γ 2 = …β
Matematika, Sekolah Menengah Atas
1/8 + 1/4 Γ 2
= 1/8 + 2/4
= 1/8 + 1/2
= 1/8 + 4/8
= 5/8
= 0,625